Index ソフト・ハード PyTorch | mnist学習 |
MNIST学習 深層学習 機能・要件 構成・方式 タスク ライブラリ 導入 sample |
MNIST学習 ・DeepConvNetによる学習 をフレームワーク化 ・Dataset と DataLoader の機能を用いてもちいてミニバッチを制御 ・datasets torch/torchvision の ImageFolder 関数で画像を読み込みを行い、 DataLoader 関数でミニバッチの制御を行う。MNIST深層学習 ・サンプル mnistTorch.py (データセット) mnistDeepConvNetTorch.py (MNIST深層学習)・カスタムデータセット datasets・ローダー ロード・ディープなニューラルネットのモデル定義 ・optimizer ・学習 ・cuda(GPU使用) ・sample実行経過
(base)> python mnistDeepConvNetTorch.py
cuda
Namespace(verbose=False, batch_size=64, test_batch_size=1000, no_shuffle=False,\
epochs=20, lr=0.001, seed=1, no_cuda=False, dry_run=False, log_interval=10,\
save_model=None, datadir='')
MyNet(
(conv1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
(conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(dropout1): Dropout(p=0.25, inplace=False)
(dropout2): Dropout(p=0.5, inplace=False)
(fc1): Linear(in_features=9216, out_features=128, bias=True)
(fc2): Linear(in_features=128, out_features=10, bias=True)
)
2022-09-11 17:37:03,594 INFO *** epoch=1/20 ***
2022-09-11 17:37:12,719 INFO test: total=9834/10000 (98.34%)
2022-09-11 17:37:12,719 INFO *** epoch=2/20 ***
2022-09-11 17:37:19,239 INFO test: total=9871/10000 (98.71%)
2022-09-11 17:37:19,239 INFO *** epoch=3/20 ***
2022-09-11 17:37:25,846 INFO test: total=9874/10000 (98.74%)
2022-09-11 17:37:25,846 INFO *** epoch=4/20 ***
2022-09-11 17:37:32,454 INFO test: total=9886/10000 (98.86%)
2022-09-11 17:37:32,454 INFO *** epoch=5/20 ***
2022-09-11 17:37:39,062 INFO test: total=9910/10000 (99.10%)
2022-09-11 17:37:39,062 INFO *** epoch=6/20 ***
2022-09-11 17:37:45,669 INFO test: total=9914/10000 (99.14%)
2022-09-11 17:37:45,669 INFO *** epoch=7/20 ***
2022-09-11 17:37:52,324 INFO test: total=9909/10000 (99.09%)
2022-09-11 17:37:52,324 INFO *** epoch=8/20 ***
2022-09-11 17:37:58,976 INFO test: total=9911/10000 (99.11%)
2022-09-11 17:37:58,976 INFO *** epoch=9/20 ***
2022-09-11 17:38:05,615 INFO test: total=9928/10000 (99.28%)
2022-09-11 17:38:05,615 INFO *** epoch=10/20 ***
2022-09-11 17:38:12,223 INFO test: total=9913/10000 (99.13%)
2022-09-11 17:38:12,223 INFO *** epoch=11/20 ***
2022-09-11 17:38:18,948 INFO test: total=9918/10000 (99.18%)
2022-09-11 17:38:18,948 INFO *** epoch=12/20 ***
2022-09-11 17:38:25,594 INFO test: total=9925/10000 (99.25%)
2022-09-11 17:38:25,610 INFO *** epoch=13/20 ***
2022-09-11 17:38:32,327 INFO test: total=9925/10000 (99.25%)
2022-09-11 17:38:32,327 INFO *** epoch=14/20 ***
2022-09-11 17:38:39,044 INFO test: total=9924/10000 (99.24%)
2022-09-11 17:38:39,044 INFO *** epoch=15/20 ***
2022-09-11 17:38:45,761 INFO test: total=9929/10000 (99.29%)
2022-09-11 17:38:45,761 INFO *** epoch=16/20 ***
2022-09-11 17:38:52,510 INFO test: total=9937/10000 (99.37%)
2022-09-11 17:38:52,510 INFO *** epoch=17/20 ***
2022-09-11 17:38:59,263 INFO test: total=9933/10000 (99.33%)
2022-09-11 17:38:59,263 INFO *** epoch=18/20 ***
2022-09-11 17:39:06,002 INFO test: total=9917/10000 (99.17%)
2022-09-11 17:39:06,002 INFO *** epoch=19/20 ***
2022-09-11 17:39:12,719 INFO test: total=9929/10000 (99.29%)
2022-09-11 17:39:12,719 INFO *** epoch=20/20 ***
2022-09-11 17:39:19,514 INFO test: total=9929/10000 (99.29%)
|
All Rights Reserved. Copyright (C) ITCL |