layers レイヤ
 Sigmoid 
 Relu 
 Affine 
 SoftmaxWithLoss 
 Dropout 
 BatchNormalization 
 Convolution 
 Pooling 
 乗算 
 加算 

 構成・方式など
 タスク
 導入
 Sample

 用語
 sampleなどはCentOS7で実施 ($ python3 xxxx.py)

 layers  #!/usr/bin/env python3  # layers.py  import numpy as np  from functions import *  from util import im2col, col2im  class Sigmoid:   def __init__(self):   self.out = None   def forward(self, x):   out = sigmoid(x)   self.out = out   return out   def backward(self, dout):   dx = dout * (1.0 - self.out) * self.out   return dx  class Relu:   def __init__(self):   self.mask = None    # True/FalseからなるNumPy配列   def forward(self, x):   self.mask = (x <= 0) # 全角あり   out = x.copy()   out[self.mask] = 0   return out   def backward(self, dout):   dout[self.mask] = 0   dx = dout   return dx  class Affine:   def __init__(self, W, b):   self.W =W   self.b = b   self.x = None   self.original_x_shape = None   # 重み・バイアスパラメータの微分   self.dW = None   self.db = None   def forward(self, x):   # テンソル対応   self.original_x_shape = x.shape   x = x.reshape(x.shape[0], -1)   self.x = x   out = np.dot(self.x, self.W) + self.b   return out   def backward(self, dout):   dx = np.dot(dout, self.W.T)   self.dW = np.dot(self.x.T, dout)   self.db = np.sum(dout, axis=0)   dx = dx.reshape(*self.original_x_shape)    # 入力データの形状に戻す(テンソル対応)   return dx  class SoftmaxWithLoss:   def __init__(self):   self.loss = None    # 損失   self.y = None    # softmaxの出力   self.t = None    # 教師データ   def forward(self, x, t):   self.t = t   self.y = softmax(x)   self.loss = cross_entropy_error(self.y, self.t)   return self.loss   def backward(self, dout=1):   batch_size = self.t.shape[0]   if self.t.size == self.y.size:    # 教師データがone-hot-vectorの場合   dx = (self.y - self.t) / batch_size   else:   dx = self.y.copy()   dx[np.arange(batch_size), self.t] -= 1   dx = dx / batch_size   return dx  class Dropout:   def __init__(self, dropout_ratio=0.5):   self.dropout_ratio = dropout_ratio   self.mask = None   def forward(self, x, train_flg=True):   if train_flg:   self.mask = np.random.rand(*x.shape) > self.dropout_ratio   return x * self.mask   else:   return x * (1.0 - self.dropout_ratio)   def backward(self, dout):   return dout * self.mask  class BatchNormalization:   def __init__(self, gamma, beta, momentum=0.9, running_mean=None, running_var=None):   self.gamma = gamma   self.beta = beta   self.momentum = momentum   self.input_shape = None # Conv層の場合は4次元、全結合層の場合は2次元   # テスト時に使用する平均と分散   self.running_mean = running_mean   self.running_var = running_var   # backward時に使用する中間データ   self.batch_size = None   self.xc = None   self.std = None   self.dgamma = None   self.dbeta = None   def forward(self, x, train_flg=True):   self.input_shape = x.shape   if x.ndim != 2:   N, C, H, W = x.shape   x = x.reshape(N, -1)   out = self.__forward(x, train_flg)   return out.reshape(*self.input_shape)   def __forward(self, x, train_flg):   if self.running_mean is None:   N, D = x.shape   self.running_mean = np.zeros(D)   self.running_var = np.zeros(D)   if train_flg:   mu = x.mean(axis=0)   xc = x - mu   var = np.mean(xc**2, axis=0)   std = np.sqrt(var + 10e-7)   xn = xc / std   self.batch_size = x.shape[0]   self.xc = xc   self.xn = xn   self.std = std   self.running_mean = self.momentum * self.running_mean + (1-self.momentum) * mu   self.running_var = self.momentum * self.running_var + (1-self.momentum) * var   else:   xc = x - self.running_mean   xn = xc / ((np.sqrt(self.running_var + 10e-7)))   out = self.gamma * xn + self.beta   return out   def backward(self, dout):   if dout.ndim != 2:   N, C, H, W = dout.shape   dout = dout.reshape(N, -1)   dx = self.__backward(dout)   dx = dx.reshape(*self.input_shape)   return dx   def __backward(self, dout):   dbeta = dout.sum(axis=0)   dgamma = np.sum(self.xn * dout, axis=0)   dxn = self.gamma * dout   dxc = dxn / self.std   dstd = -np.sum((dxn * self.xc) / (self.std * self.std), axis=0)   dvar = 0.5 * dstd / self.std   dxc += (2.0 / self.batch_size) * self.xc * dvar   dmu = np.sum(dxc, axis=0)   dx = dxc - dmu / self.batch_size   self.dgamma = dgamma   self.dbeta = dbeta   return dx  class Convolution:   def __init__(self, W, b, stride=1, pad=0):   self.W = W    # 引数、フィルター(重み)、4次元形状(FN,C,FH,FW)   self.b = b    # 引数、バイアス   self.stride = stride    # 引数、ストライド   self.pad = pad    # 引数、パディング   # 中間データ(backward時に使用)   self.x = None   self.col = None   self.col_W = None   # 重み・バイアスパラメータの勾配   self.dW = None   self.db = None   def forward(self, x):   FN, C, FH, FW = self.W.shape   N, C, H, W = x.shape   out_h = 1 + int((H + 2*self.pad - FH) / self.stride)   out_w = 1 + int((W + 2*self.pad - FW) / self.stride)   col = im2col(x, FH, FW, self.stride, self.pad)    # 入力データを展開   col_W = self.W.reshape(FN, -1).T    # フィルター(重み)を2次元配列に展開   # reshape(FN, -1):多次元の要素配列を整形   # 形状(10,3,5,5)が、reshape(10, -1)で、形状(10,75)に整形   out = np.dot(col, col_W) + self.b   out = out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2)   # transpose:多次元配列の軸の順番を入れ替える。(0,1,2,3)順を、(0,3,1,2)に入れ替える。   self.x = x   self.col = col   self.col_W = col_W   return out   def backward(self, dout):   FN, C, FH, FW = self.W.shape   dout = dout.transpose(0,2,3,1).reshape(-1, FN)   self.db = np.sum(dout, axis=0)   self.dW = np.dot(self.col.T, dout)   self.dW = self.dW.transpose(1, 0).reshape(FN, C, FH, FW)   dcol = np.dot(dout, self.col_W.T)   dx = col2im(dcol, self.x.shape, FH, FW, self.stride, self.pad)   return dx  class Pooling:   def __init__(self, pool_h, pool_w, stride=1, pad=0):   self.pool_h = pool_h   self.pool_w = pool_w   self.stride = stride   self.pad = pad   self.x = None   self.arg_max = None   def forward(self, x):   N, C, H, W = x.shape   out_h = int(1 + (H - self.pool_h) / self.stride)   out_w = int(1 + (W - self.pool_w) / self.stride)   # 展開   col = im2col(x, self.pool_h, self.pool_w, self.stride, self.pad)   col = col.reshape(-1, self.pool_h*self.pool_w)   arg_max = np.argmax(col, axis=1)   # 最大値   out = np.max(col, axis=1)   # 整形   out = out.reshape(N, out_h, out_w, C).transpose(0, 3, 1, 2)   self.x = x   self.arg_max = arg_max   return out   def backward(self, dout):   dout = dout.transpose(0, 2, 3, 1)   pool_size = self.pool_h * self.pool_w   dmax = np.zeros((dout.size, pool_size))   dmax[np.arange(self.arg_max.size), self.arg_max.flatten()] = dout.flatten()   dmax = dmax.reshape(dout.shape + (pool_size,))   dcol = dmax.reshape(dmax.shape[0] * dmax.shape[1] * dmax.shape[2], -1)   dx = col2im(dcol, self.x.shape, self.pool_h, self.pool_w, self.stride, self.pad)   return dx  class MulLayer: # 乗算レイヤ   def __init__(self):   self.x = None   self.y = None     def forward(self, x, y):   self.x = x    # backward()用に保持する。   self.y = y   out = x * y   return out   def backward(self, dout):    # 上流から伝わってきた微分(dout)   dx = dout * self.y    # x と y がひっくり返る。   dy = dout * self.x   return dx, dy  class MulLayer: # 加算レイヤ   def __init__(self):   pass    # 命令「何もしない」   def forward(self, x, y):   out = x + y   return out   def backward(self, dout):   dx = dout * 1    # 上流から伝わってきた微分(dout)をそのまま下流に流す。   dy = dout * 1   return dx, dy